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ABSTRACT
◥

Purpose: In breast cancer, bevacizumab increased pCR rate but
not long-term survival and no predictive markers are available to
identify patients with long-term benefit from the drug.

Experimental design:We profiled 289 pretherapeutic formalin-
fixed, paraffin-embedded (FFPE) biopsies of HER2-negative
patients from the GeparQuinto trial of neoadjuvant chemotherapy
� bevacizumab by exome-capture RNA-sequencing (RNA-seq). In
a prospectively planned study, we tested molecular signatures for
response prediction. IHC validation was performed using tissue
microarrays.

Results: We found strong agreement of molecular and path-
ologic parameters as hormone receptors, grading, and lympho-
cyte infiltration in 221 high-quality samples. Response rates
(49.3% pCR overall) were higher in basal-like (68.9%) and
HER2-enriched (45.5%) than in luminal B (35.7%), luminal A
(17.9%), and normal-like (20.0%) subtypes. T-cell (OR ¼ 1.60;
95% confidence interval, 1.21–2.12; P ¼ 0.001), proliferation
(OR ¼ 2.88; 95% CI, 2.00–4.15; P < 0.001), and hypoxia

signatures (OR ¼ 1.92; 95% CI, 1.41–2.60; P < 0.001) signifi-
cantly predicted pCR in univariate analysis. In a prespecified
multivariate logistic regression, a small hypoxia signature pre-
dicted pCR (OR ¼ 2.40; 95% CI, 1.28–4.51; P ¼ 0.006) with a
significant interaction with bevacizumab treatment (P ¼ 0.020).
IHC validation using NDRG1 as marker revealed highly heter-
ogenous expression within tissue leading to profound loss of
sensitivity in TMA analysis, still a significant predictive value for
pCR was detected (P ¼ 0.025).

Conclusions: Exome-capture RNA-seq characterizes small
FFPE core biopsies by reliably detecting factors as for example
ER status, grade, and tumor-infiltrating lymphocytes levels. Beside
molecular subtypes and immune signatures, a small hypoxia
signature predicted pCR to bevacizumab, which could be validated
by IHC. The signature can have important applications for
bevacizumab treatment in different cancer types and might also
have a role for novel combination therapies of bevacizumab with
immune checkpoint inhibition.

Introduction
Adding bevacizumab to neoadjuvant chemotherapy in breast can-

cer increases pCR rates (1–4), but this difference in response did not
translate into a robust improvement of survival (5–8). Several expla-
nations for this paradox have been proposed, including a greater effect
of bevacizumab on vascularization of primary tumors than on micro-
metastases (6, 9). Nevertheless, patient subsets with long-term benefit
frombevacizumabmay exist, but despite considerable efforts no robust
predictive markers are available to identify them (10, 11). Still, in
several other solid cancer types bevacizumab currently has an impor-
tant clinical role (12). Moreover, new combination therapies of
bevacizumab with immune checkpoint inhibitors show promising
results (13–16).

Molecular subtypes of breast cancer differ in prognosis and treat-
ment response. We previously demonstrated that in TNBC lympho-
cyte signatures correlate with good prognosis and response to neoad-
juvant chemotherapy, whereas hypoxia/inflammatory signatures
(VEGFA/IL8 metagenes) are associated with poor prognosis (17, 18).
On the other hand, hypoxia is an important regulator of VEGF (11).
Therefore, it may be hypothesized that tumors with hypoxia could be
more dependent on VEGF and responsive to its inhibition. Thus,
hypoxia signatures may be candidate markers to predict response to
bevacizumab treatment. Another simplistic model may be that hyp-
oxia andnecrosis signaturesmight characterize tumors that are already
“knocked on,” and such tumors could show increased response to
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different kinds of treatment. Although molecular profiling of partially
degraded RNA from archival FFPE tissues had been challenging,
recently developed new exome capture RNA-seq methods show some
promising results (19, 20). Therefore, the goal of the present blinded
study was to profile pretreatment FFPE biopsies of HER2-negative
breast cancers from the neoadjuvant GeparQuinto trial (1, 6) by this
method, to identify a predictive marker for response to bevacizu-
mab treatment. We analyzed robustness of the methodology and
followed a prespecified protocol to test molecular subtypes, T-cell
and hypoxia signature as predictors of response. We found that the
hypoxia signature specifically predicts pCR to bevacizumab treat-
ment and identified NDRG1 IHC as a single marker for signature
validation.

Materials and Methods
All analyses were performed according to the “REporting recom-

mendations for tumor MARKer prognostic studies” (REMARK) cri-
teria (21) with a “prospective-retrospective” design (22). A CONSORT
type diagram (23) of the flow of samples through the study is shown in
Supplementary Fig. S1.

Patients
The details of the GeparQuinto trial (NCT 00567554) have been

described in several previous publications (1, 6). In this study, only
HER2-negative patients from GeparQuinto were included. These
patients were treated with anthracycline and taxane neoadjuvant
chemotherapy and were randomly assigned to either simultaneous
treatment with bevacizumab or no additional therapy. In total,
1,948 patients were randomly assigned in the main study. This
study is based on 1540 HER2-negative patients with response data
(Supplementary Fig. S1). The biomarker investigations were con-
ducted in accordance with the International Ethical Guidelines for
Biomedical Research involving Human Subjects (CIOMS). Written
informed consent for use of biomaterials was obtained from all
patients, ethic committee approval was obtained for all centers
participating in the clinical study and from the institutional review
board of the Charit�e Hospital.

Statistical analysis plan of preplanned blinded study
The statistical analysis plan (SAP) of this project was finalized at

2016-01-28. Analysis teams were fully blinded to either molecular
or clinical data, respectively. The specific roles and blinding status
of all contributing teams is given in Supplementary Table S1. The
predefined analytical aims of the study are presented in Supple-
mentary Table S2.

Tissue samples
Formalin-fixed paraffin embedded (FFPE) tissue of pretherapeu-

tic cores with written informed consent were stored in the GBG
tumor bank at the Institute of Pathology, Charit�e Hospital, Berlin,
Germany. All available tissue samples from HER2-negative patients
with pCR (N ¼ 181) were selected and n ¼ 197 samples of non-pCR
patients were chosen randomly to have 378 samples overall (Sup-
plementary Fig. S1).

RNA-seq profiling and primary bioinformatic analysis
For RNA extraction, 5 mmFFPE sections were deparaffinized, RNA

extracted using RecoverAll FFPE Kit (Ambion/Invitrogen), DNase
treated, and purified using AMPure RNA XP Clean beads (Agencourt
Bioscience Corp.). Samples with <40 ng RNA were excluded from
further analysis. RNA-seq from total RNA in FFPE tissue can be
challenging due to limited capture of partially degraded RNA (24). In
contrast, exome-capture–based RNA-seq may allow reproducible
molecular characterization of such low-quality RNA (19, 20, 25, 26).
We used the Illumina TruSeq RNAAccess Library Prep Kit (Illumina)
with 40 ng of FFPE RNA. Libraries were processed in batches of 48 and
12 samples were pooled permultiplex sequencing run, clustered onto a
NextSeq 500 High Output flow cell, and sequenced to either 150 or
75 bp paired end reads. For samples that failed initial QC based on post
PCR yield (<3.5 ng) or missing reads for one of 18 housekeeping genes
(ABCF1, ACTB, ALAS1, B2M, CLTC, G6PD, GAPDH, GUSB, HPRT1,
LDHA, PGK1, POLR1B, POLR2A, RPL19, RPLP0, SDHA, TBP,
TUBB), library generation was repeated. All sequence data were
processed using Omics Pipe (27). FastQC (v0.11.2) was used for read
quality check, BBDuk (v34.46) for adapter trimming (with parameters:
minlen¼ 25 qtrim¼ rl trimq¼ 10 ktrim¼ r k¼ 25mink¼ 11 hdist¼ 1
overwrite ¼ true tbo ¼ t tpe ¼ t), STAR (v2.4.0g1) for alignment to
hg19 (28), SAMtools (v0.1.19) for sorting, and featureCounts (v1.4.6)
using Refseq hg19 for gene counts (29). Samples with less than 3
million total raw reads, or with less than one count in the set of 18
control genes, were marked as low quality. RNA-seq data of 289
patients were classified as either of high (N ¼ 221) or of low quality
(N ¼ 68) as shown in Supplementary Fig. S1. The final blinded
RNA-seq dataset was transferred to GBG-headquarter and distributed
to analysis teams. A comparison of the complete trial cohort and the
RNA-seq cohorts is provided in Supplementary Table S3. The analysis
of the RNA-seq dataset was performed fully blinded to any clinical or
pathologic sample information.

Concordance of ER and PR status and molecular subtyping
Cutoffs for RNA-seq–derived ER and PR status were based on the

bimodal distribution of variance stabilized count data (30) of the two
genes. Concordance with pathologic classification was analyzed as
described previously (31). The “Absolute IntrinsicMolecular Subtypes
(AIMS)” method, which is independent of dataset composition (32),
was applied as a single sample predictor using raw count data. Of all
23,710 genes in theRNA-seq dataset, 19,000were successfully linked to
an EntrezID as required for the AIMS method.

Platform transfer of gene signatures
Despite the ability to detect several marker genes, the exome-

capture–based RNA-seq data from FFPE clearly differed from
other datasets of microarray of RNA-seq analyses from frozen
tissue samples. This bias precluded a simple application of any
predefined gene-lists as signatures, which were derived from
different platforms. Instead, we focused in our analysis on robust
expression signals (or “metagenes”) that met the following criteria:

Translational Relevance

In this prospectively planned study, we tested molecular signa-
tures for response prediction to neoadjuvant chemotherapy �
bevacizumab in the GeparQuinto breast cancer trial. To this end,
we profiled pretherapeutic FFPE biopsies by exome-capture RNA-
seq. Beside molecular subtypes and immune signatures, a small
hypoxia signature predicted pathologic complete response. This
signature was validated by IHC and can have important applica-
tions for bevacizumab treatment in different cancer types and
might also have a role for novel combination therapies of bev-
acizumab with immune checkpoint inhibition.
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(i) signals need to be clearly measurable, (ii) distinguishable from
each other, and (iii) principally reproducible in different datasets.
Previous studies have shown that technological variability can be
overcome by noise filtering combined with unsupervised hierar-
chical clustering, which results in overlapping, but not identical
marker sets for metagenes on different platforms and datasets
(refs. 17, 18, 33–38).

We used only the 221 high-quality samples to derive robust gene
clusters for platform transfer. To reduce noise, a gene filter was applied
requiring at least 10 read counts inmore than 10% of the samples. Log2
count data of 7,518 genes passing this filter were median centered and
then used for hierarchical clustering. We then identified reproducible
gene clusters representing previously identified gene signatures
from our microarray (17) and RNA-seq studies (18) as metagenes
for “ER-related,” “Basal,” “Proliferation,” “Adipocytes,” “Stroma,”
“Ribosomal,” “IFN,” “MHC2,” “T-cell,” and “Hypoxia” (Fig. 1). The
268 individual genes of these clusters were extracted and signatures
were calculated as mean values of the respective genes and then
z-transformed. Gene lists of signatures are provided in Supplementary
Table S4.

IHC validation
Marker selection

The principal procedure of the approach for IHC validation is
presented in Supplementary Fig. S2. The hypoxia gene cluster was
previously identified in breast cancer expression data in several studies
and associated with poor prognosis (17, 18, 33, 39, 40). To characterize
this group of genes in more detail, we performed unsupervised cluster
analyses in different cohorts and datasets of breast cancers from
different platforms (Supplementary Fig. S2A). The platforms encom-
passed Affymetrix (17, 31), Agilent (33), Illumina (34), RNA-
seq (18, 35), and FFPE-RNA-seq. The different assembled cohorts
encompassed either triple negative breast cancer (TNBC) as a single
subtype, cohorts of ER negative tumors (both TNBC and HER2), or
both ER positive and ER negative tumors together. As a consensus
cluster, we identified a stable core of six genes with correlated
expression which are presented in Supplementary Table S5. All six
genes are linked to hypoxia, angiogenesis, and stress response. How-
ever, the filtered FFPE RNA-seq dataset from GeparQuinto contained
only measurements for 3 of the 6 genes (VEGFA, NDRG1, CSTB).
Thus, these 3 genes were studied further for IHC validation.

IHC transfer in independent dataset
To establish an IHC assay for the signature, we first used an

independent Affymetrix microarray dataset of TNBC (17). As pre-
sented in Supplementary Fig. S2A, we performed blinded IHC analysis
of the three markers (VEGFA, NDRG1, CSTB) and compared IHC
scorings and Affymetrix gene expression data for 26 TNBC samples
(Supplementary Fig. S3). The best correlation was found for NDRG1
(R2¼ 0.526) with an absolute intraclass correlation (ICC) of 0.98 (95%
confidence interval [CI], 0.96–0.99) between two independent obser-
vers. Moreover, IHC revealed strong para-necrotic expression of
NDRG1 in line with its presumed functions in cellular stress and
hypoxia (refs. 41–45; Supplementary Fig. S4).

IHC analysis of core biopsy samples from GeparQuinto
Because we observed considerable heterogeneity of expression

within tissues samples, we next tested whether NDRG1 IHC can be
performed on core biopsy samples from the clinical trial (Supplemen-
tary Fig. S2B). We defined a cutoff of z-score 1.5 from the RNA-seq
data of GeparQuinto as strong expression and selected a test cohort of
27 GeparQuinto samples. Blinded visual scoring of whole slide IHC of
the core biopsies was performed to assess sensitivity and specificity of
classification by the pathologist compared with RNA-seq. In addition,
we performed digital image analysis using QuPath software (46, 47)
and analyzed sensitivity and specificity with a cutoff of 10% positive
cells (Supplementary Fig. S2B). The corresponding data on accuracy
are given in (Supplementary Table S6).

IHC analysis of microcore TMA
Finally, we analyzed a tissue microarray (TMA) cohort of small

microcores from the core biopsies of all GeparQuinto samples with
RNA-seq data using digital image analysis (Supplementary Fig. S2C).
This dataset was used to validate the predictive value of NDRG1 for
pCR and to study the loss of sensitivity in the TMA format because of
heterogeneity in expression.

Statistical analysis
All clinical data, including estrogen and progesterone receptor

status were extracted from the clinical study database at GBG head-
quarter and represent local assessment. For 67 of the high-quality
samples tumor-infiltrating lymphocyte (TIL) scoring was available on
file from the PREDICT study (48), all from the non-bevacizumab

Figure 1.

Molecular subtypes and gene signatures in prether-
apeutic core samples from the GeparQuinto trial. A
total of 221 samples with high-quality RNA-seq data
were stratified into molecular subtypes using the
AIMS method, and the respective subtype classifica-
tions are given in the upmost row (Lum, luminal;
HER-E: HER2-enriched; NL, normal-like). In addition,
log2 count data of 268 genes from gene clusters
representing previously identified signatures from
our microarray (17) and RNA-seq studies (18) were
median centered and are represented in the bottom
panel (red/green) heatmap. Gene signatures in the
above (yellow/blue) heatmap were calculated as
mean values of the respective gene clusters in the
bottompanel. Sampleswere sorted first according to
AIMS subtype and second within each subtype
according to T-cell signature expression from left to
right.
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group. To avoid any overfitting, all cutoffs and analysis steps were
predefined in writing, blinded to any patient data. Continuous sig-
natures for proliferation, stroma, T cells, and hypoxia were z-
transformed for use in univariate and multivariate logistic regression.
Pearson chi-square and Fisher exact test were applied to assess
associations between categorical parameters. To analyze the predictive
value of molecular markers for pCR univariate and multivariate
logistic regression adjusted for relevant prespecified baseline charac-
teristics were used. The R software environment (http://www.r-
project.org/) and SPSS 24 (http://www.ibm.com/) were used for all
analyses. All P values are two-sided and P ¼ 0.05 was considered as
significant. Supplementary information on code and data are available
online at https://github.com/tkarn/G5-RNA-Seq.

Results
Molecular profiling of FFPE cores by exome-capture–based
RNA-seq

Of 378 pretherapeutic biopsies from HER2-negative patients of the
GeparQuinto trial, 289 samples with RNA-seq data were classified as
either of high (N ¼ 221) or of low quality (N ¼ 68). For 54 samples,
RNA yield was insufficient and 35 did not pass initial QC (Supple-
mentary Fig. S1). A comparison of the complete HER2-negative trial
cohort and the RNA-seq cohorts is provided in Supplementary
Table S3. Because of the enrichment in patients with pCR in the
RNA-seq cohort, we also detected a significantly higher proportion of
hormone receptor negative high-grade tumors in this comparison.

To study robustness of the data, we first compared RNA-seq–
derived ER andPR status of the samples with data from local pathology
in a blinded fashion. IHC classifications strongly correlated with gene
expression (overall correctness 84% and 81% for ER, and 81% and 75%
for PR, in samples with high and low quality, respectively; Supple-
mentary Table S7). These data may suggest that samples with low
quality might still be used for basic subtype stratification despite a
lower number of genes with measurable expression values. However,
results from molecular subtyping differed significantly for the low-
quality group and most of the gene signatures could not be effectively
measured in those samples (see Supplementary Fig. S5 and Table S8).
Therefore, we focused in all subsequent analyses only on the 221 high-
quality samples.

We next stratified the high-quality samples into molecular subtypes
by applying the AIMS method as single sample predictor (32). A total
of 103 (46.6%), 33 (14.9%), 28 (12.7%), 42 (19.0%), and 15 (6.8%)
samples were classified as basal-like, HER2-enriched, luminal A,
luminal B, and normal-like, respectively (Table 1).Molecular subtypes
clearly differed inER and PR IHC-statuswithmore than 95%hormone
receptor positive tumors in the luminal groups but only 20% in the

basal-like group (Table 1). Moreover, we found that most basal-like
tumors were histologic grade 3 (80.4% compared with 18.5% of
luminal A). Also the luminal B group contained more grade 3 tumors
(38.1%) and a higher percentage of ERþ/PR� tumors than luminal A
(16.7% vs. 3.6%), whichwe also observed for theHER2-enriched group
(15.2%, Table 1).

Gene signatures for additional biological phenotypes
We used the 221 high-quality samples for platform transfer of

previously described gene signatures for different biological
phenotypes (17, 18). Figure 1 demonstrates the expression of
10 such signatures (ER-related, basal, proliferation, adipocyte,
stroma, ribosomal, IFN, MHC1, T-cell, and hypoxia) in the
different molecular subtypes. As proof of principle, we tested three
signatures (proliferation, stroma, T-cell) for their association with
data from histopathologic analysis. As expected, the proliferation
signature correlated with histological grade (median �0.73, �0.39,
and 0.53 in G1, G2, and G3, respectively; P < 0.001; Supplementary
Fig. S6). For tumor content, we detected a weak inverse correlation
with the T-cell signature (Spearman r ¼ �0.13; P ¼ 0.049), but no
significant association with stroma and proliferation signatures.
Scoring for TILs counts was on file for 67 of the high-quality
samples in the clinical database from the PREDICT study (48). We
found a strong positive correlation of TIL counts with the T-cell
signature (Spearman r ¼ 0.53; P < 0.001), whereas the stroma
signature showed an inverse correlation (Spearman r ¼ �0.31;
P ¼ 0.010), and no significant association with the proliferation
signature was detected.

Molecular markers and prediction of response
To avoid overfitting, we tested a restricted predefined subset of four

variables (molecular subtype and the proliferation, T cell, and hypoxia
signatures) as predictors in univariate logistic regression of pCR. As
shown in Table 1, response rates (49.3% overall in this pCR enriched
cohort) differed significantly by subtype (P < 0.001), with higher pCR
rates in basal-like (68.9%) andHER2 enriched (45.5%) than in luminal
B (35.7%), luminal A (17.9%), and normal-like (20.0%). In univariate
logistic regression analysis, both basal-like subtype (P ¼ 0.001), T cell
(OR ¼ 1.60; 95% CI, 1.21–2.12; P ¼ 0.001), proliferation (OR ¼ 2.88;
95% CI, 2.00–4.16; P < 0.001), and hypoxia signatures (OR ¼ 1.92;
95% CI, 1.41–2.60; P < 0.001) were significant predictors for pCR
(Supplementary Table S9).

We next performed prespecified multivariate logistic regression of
pCR, which included the following variables: hormone receptor status,
treatment arm (�bevacizumab), the hypoxia signature, and the inter-
action term between the treatment arm and the hypoxia signature
(model A in Table 2). In this analysis, both hormone receptor status

Table 1. Molecular subtyping of HER2-negative tumors from geparquinto trial by FFPE-RNA-seq.

Group Basal-like HER2-enriched LumA LumB Normal-like
Total (N ¼ 221, %) 103 (46.6%) 33 (14.9%) 28 (12.7%) 42 (19.0%) 15 (6.8%) P value

HR-positive (53.8%) 19.4% 66.7% 96.4% 95.2% 66.7% <0.001
ERþ/PRþ (40.7%) 7.8% 48.5% 89.3% 78.6% 53.3%
ERþ/PR� (11.3%) 9.7% 15.2% 3.6% 16.7% 13.3%
ER�/PRþ (1.8%) 1.9% 3.0% 3.6% 0% 0%
ER�/PR� (46.2%) 80.6% 33.3% 3.6% 4.8% 33.3% <0.001
Grade 3 (57.5%) 80.4% 54.5% 18.5% 38.1% 33.3% <0.001
pCR (49.3%) 68.9% 45.5% 17.9% 35.7% 20.0% <0.001
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(OR ¼ 3.97; 95% CI, 2.14–7.38; P < 0.001) and the hypoxia signature
(OR ¼ 2.59; 95% CI, 1.40–4.76; P ¼ 0.002) were strong predictors of
pCR with a significant interaction between the hypoxia signature and
the treatment arm (P¼ 0.023). In additional multivariate analysis, we
included the same variables (HR, treatment, hypoxia signature, and the

interaction term) as well as additional clinical parameters (lymph node
status, tumor size, and grade; model B in Table 2) and the T-cell
signature (model C in Table 2). As shown in Table 2, the hypoxia
signature (OR ¼ 2.40; 95% CI, 1.28–4.51; P ¼ 0.006 and OR ¼ 2.17;
95% CI, 1.14–4.10; P ¼ 0.018, for models B and C, respectively)

Table 2. Multivariate logistic regression of pCR.

Model Model A Model B Model C
A B C OR 95% CI P value OR 95% CI P value OR 95% CI P value

| | | Hormone receptor (neg. vs. pos.) 3.97 2.14–7.38 <0.001 3.50 1.78–6.89 <0.001 3.45 1.75–6.82 <0.001
| | | Hypoxia signature (z-score) 2.59 1.40–4.76 0.002 2.40 1.28–4.51 0.006 2.17 1.14–4.10 0.018
| | | Bevacizumab therapy 1.25 0.67–2.31 0.48 1.23 0.65–2.34 0.52 1.20 0.63–2.27 0.58
| | | Interaction hypoxia signature �

bevacizumab
2.29 1.12–4.69 0.023 2.38 1.15–4.95 0.020 2.35 1.14–4.85 0.021

| | cN (�10 vs. 4-9 vs. 1-3 vs. 0 positive nodes) 0.90 0.55–1.48 0.68 0.93 0.57–1.52 0.77
| | cT (T4d vs. T4a-c vs. T3 vs. T2 vs. T1) 0.87 0.60–1.25 0.44 0.91 0.63–1.31 0.60
| | Grading (G3 vs. G2 vs. G1) 1.78 0.95–3.33 0.073 1.80 0.95–3.39 0.069

| T-cell signature (z-score) 1.27 0.90–1.79 0.177

Note: Numbers in bold indicate significant P values.

Figure 2.

Examples of loss of NDRG1 expression signal in TMA analysis.A, B, and C present three examples, where the NDRG1 expression signal is detected both in whole slide
analysis and in the small TMA core of the respective sample. In contrast,D, E, and F presented three different examples, where the expression signal fromwhole slide
analysiswas lost in the TMA analysis. For each of the six samples two images are shown: the left image shows an enlarged region of thewhole slide IHC (with full slide
overview in the small box at the bottom). The right image shows the result of the small TMAmicrocore from the same sample. Percentage of positive cells fromdigital
image analyses by QuPath are given above the respective images.
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remained as significant independent predictor for pCR in this
analysis showing a significant interaction with bevacizumab treatment
(P ¼ 0.020 and 0.021, respectively).

Validation of the predictive hypoxia signature by IHC
We selected NDRG1 as single marker for the hypoxia signature

based on good correlation (R2 ¼ 0.526) of IHC and mRNA in an
independent microarray dataset (ref. 17; see Supplementary Fig. S2A;
Materials and Methods section, for details). We next tested whether
NDRG1 IHC can be performed on core biopsy samples from Gepar-
Quinto (Supplementary Fig. S2B).We used a cutoff of z-score 1.5 from
the RNA-seq data as strong expression and selected a test cohort of 27
GeparQuinto samples for whole slide IHC of core biopsies (Supple-
mentary Fig. S2B). Blinded visual scoring of 23 evaluable samples
showed high sensitivity (89.5%) and specificity (100%) in this finding
cohort (Supplementary Table S6). When we applied digital image
analysis (46), a cutoff of 10% positive cells led to a sensitivity of 68.4%
and specificity of 100% compared with RNA-seq (Supplementary
Table S6). Finally, we analyzed a TMA cohort of small microcores
from the core biopsies of 251GeparQuinto sampleswithRNA-seq data
using digital image analysis (Supplementary Fig. S2C; Materials and
Methods section).We expected critical challenges for reliable detection
of the heterogenous expression in the tiny TMA cores from the trial.
Nevertheless, we observed a significant predictive value for pCR when
we used the z-score of the percentage of positive cells from digital
image analysis of the TMA samples in univariate logistic regression
(OR¼ 1.36; 95%CI, 1.04–1.79; P¼ 0.025). In contrast, in multivariate
analysis using z-score 1.5 as cutoff we detected only a nonsignificant
trend (OR ¼ 3.79; 95% CI, 0.85–16.9; P ¼ 0.080; Supplementary
Table S10). We suspected that the reduced predictive value in this
analysis is due to loss of the heterogeneous expression signal in the
small microcore tissue samples of the TMA. Therefore, we also
compared results of digital image analyses from whole slide IHC of
core biopsies and frommicrocores of the TMA in the finding cohort of
23 samples. For this, we applied the cutoff of 10% positive cells

described previously. We then calculated sensitivity and specificity
of the image analyses of whole slide and TMA based on the RNA-seq
data cutoff z-score 1.5. We found a considerable drop in sensitivity
from 68.4% to 36.8% on TMA slides (Supplementary Table S6; Figs. 2
and 3). Finally, we compared RNA-seq and TMA results of all 193
samples with high-quality RNA-seq, and also observed a low sensi-
tivity of only 40.0%. Moreover, the PPV was only 25.8% among those
193 samples because 23withmore than 10%positive cells had anRNA-
seq z-score below 1.5 (Supplementary Table S6; Supplementary
Fig. S7). These results demonstrate that a reliable detection of the
hypoxia signature may only be feasible on whole slide IHC of core
biopsies.

Discussion
We have previously shown that hypoxia/inflammatory signa-

tures (VEGFA/IL8 metagenes) are associated with poor prog-
nosis in TNBC (17, 18). Hypoxia in the tumor can induce an
immunosuppressive microenvironment and several studies have
demonstrated the benefit of combining anti-VEGF agents with
various immunotherapies, already leading to FDA approval in
kidney cancer (13–16). On the other hand, hypoxia is an
important regulator of VEGF (11) and it may also be hypoth-
esized that hypoxic tumors could be more dependent on VEGF
and more responsive to its inhibition. Another simplistic model
could be that hypoxia and necrosis signatures might characterize
tumors that are already “knocked on,” and such tumors
may show increased response to different kinds of treatment.
Therefore, we tested the predictive value of our small hypoxia
signature for pCR after bevacizumab in samples from
the neoadjuvant Geparquinto trial according to a prespecified
protocol in a blinded fashion.

Our study demonstrates first, that exome-capture RNA-seq allows
robust subtyping of clinical samples with limited FFPE tissue from
neoadjuvant core biopsies. We found strong agreement of molecular
and pathologic parameters, as for example, hormone receptor status,
histologic grading, and lymphocyte infiltration, and verified the known
differences in pCR rates between molecular subtypes. Second, in
prespecified analyses we found that several signatures (molecular
subtype, proliferation, T cell, and hypoxia signatures) significantly
predicted pCR (Supplementary Table S9). Strikingly, the hypoxia
signature remained significant in a multivariate model of pCR and
showed a significant interaction with bevacizumab treatment
(Table 2). In patients without bevacizumab treatment, we only
observed a nonsignificant trend for pCR in univariate analysis
(OR ¼ 1.40; 95% CI ¼ 0.97–2.02; P ¼ 0.076; Supplementary
Fig. S8), which may suggest also an increased sensitivity to chemo-
therapy of tumors with high hypoxia signature.

Our IHC studies suggest that the cellular source of the hypoxia
RNA-signature are perinecrotic cells. Highly heterogenous expression
within tissue precluded a reliable IHC detection in the tiny TMA
microcores from the core biopsies of the trial (Figs. 2 and 3). Even if
we could still detect a predictive value for pCR, this heterogeneity led to
a tremendous loss of sensitivity and specificity (Supplementary
Table S6). Therefore, whole slide IHC is required for reliable detection
and further study of the hypoxia signature. On the other hand, because
necrosis detection in routine pathology is straight forward, we
suggest that estimating and reporting the amount of necrosis in the
pathology report may also be helpful in predicting response to
chemotherapy, and could potentially be useful as stratification factor
in clinical trials.
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Loss of NDRG1 expression signal in TMA analysis. Distribution of measurements
of percent positive cells as determined by QuPath digital image analysis are
shown as box plots for 23 paired core biopsy samples, whichwere analyzed both
on whole slide IHC biopsies (left) and as microcores on TMA (right). The
corresponding samples are connected by lines (red and blue for samples
positive and negative based on RNA-seq, respectively). Although for six sam-
ples, higher percentages of positive cells were obtained in TMA analysis; for 11
(64.7%) of the positive samples, the expression signal was lost in TMA analysis
because of a drop below the 10% cutoff.
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Several other biomarker for bevacizumab response has been
proposed and it is becoming clear that single markers may not be
sufficient to predict complex phenotypes as the response to
bevacizumab (10). Thus, future studies may integrate individual
effects of different markers from tissue and plasma using advanced
statistical analyses and combination into general predictive scores,
which may allow more robust predictions across cancers (10).
These may also include important information of changes during
treatment that have been reported (11, 49). Moreover, the role of a
marker may also depend on treatment combinations. For example,
in our study hypoxia seems to predict response to bevacizumab
and chemotherapy. But on the other hand, hypoxia seems to
induce an immunosuppressive microenvironment (15) and there-
fore could also have a potential role as predictive factor for
immunotherapy and for combinations of bevacizumab with check-
point inhibitors (14, 16).

Despite improvement of pCR bevacizumab did not increase
breast cancer survival in several studies, which might be due to
a greater effect on vascularization of the primary tumor than on
micrometastases (6–8). The hypoxia signature has been associated
with poor survival in TNBC (17, 18) and metastasis in different tumor
types (33). However, we could not detect a prognostic value of the
signature for long term survival in the GeparQuinto trial patients (data
not shown), but our RNA-Seq dataset was clearly not sufficiently
powered for such analyses.

Strenghts of our study are, first that we used samples from a
randomized controlled trial, second that we prospectively developed
an SAP and followed a pre-specified blinded protocol, and third that
we tested only a limited number of pre-specified variables thereby
avoiding problems of multiple testing. However, our study has
limitations. First, only a subset of patients from the trial was
included and the availability of tissue samples could introduce bias.
In particular, we included all available tissue samples from HER2
negative patients with pCR. Because of this enrichment in pCR
patients, there were also more hormone receptor negative high
grade tumors in the RNA-Seq analyses set (Supplementary
Table S3). Nevertheless, we did not enrich for pCR cases in the
immunohistochemical validation on TMA, but still observed a
predictive effect of the marker for pCR in that data. Second, despite
our RNA-Seq dataset represents the largest so far for breast cancers
with neoadjuvant bevacizumab treatment, the sample size is still
very small, as even the complete GeparQuinto trial was not powered
for survival differences. Finally, a proper validation RNA-Seq
dataset for our findings is yet missing.

In conclusion, our study shows that exome-capture RNA-Seq allows
robust genomic characterization of clinical samples with limited FFPE
material from core biopsies and the derived molecular subtypes and
immune signatures are predictive for pCR. We found that a small
hypoxia signature specifically predicts pCR to bevacizumab treatment,
which could be validated by immunohistochemical analysis. The
signature may have important applications as predictive factor for
bevacizumab response in different cancer types, as well as for novel
combination treatments of bevacizumab with immune checkpoint
inhibition (13–16).
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Supplementary Figure S1: Flow of samples through the study 
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Enrollment 


Assessed for eligibility GeparQuinto, HER2-negative patients with response data (n=1540): 


 n=384 pCR, n=1156 no pCR 


n=181 pCR patients with available pre-treatment tissue 


n=197 non-pCR patients (randomly selected balanced between arms) 


Excluded  (n=89) 


   Insufficient RNA (n=54) 


   Did not pass initial QC (n=35) 


RNA-Seq, QC (n=289) 


 203 pCR patients insufficient/no tissue 


 959 non-pCR patients 


High Quality RNA-Seq (n=221) Low Quality RNA-Seq (n=68) 


RNA-Seq QC 


 pCR in molecular subtypes 


 Logistic regress. of pCR with gene signatures 


Prediction of 


response 


Correlation with: 
Histol. grade (n=221), tumor content 
(n=221),  TIL counts (n=67) 


 


Examination of gene signature 


detection in Low Quality samples 


 


Gene 


signatures 


Concordance of molecular subtyping 


with data from pathology 


Robustness of molecular subtyping 


in Low Quality Samples 


 


ER, PR, AIMS 


Immuno-histochemical 


validation on TMA (n=251) 







Gene cluster characterization in different cohorts (TNBC, ER negative, all subtypes) 


and platforms (Affymetrix, Agilent, Illumina, RNA-Seq, FFPE-RNA-Seq)


Core sonsensus of six genes (VEGFA, NDRG1, ANGPTL4, ADM, DDIT4, CSTB) 


linked to hypoxia, angiogenesis, stress response


Not in filtered GeparQuinto 


FFPE-RNA-Seq:


ANGPTL4, ADM, DDIT4


VEGFA, NDRG1, CSTB


Independent cohort 


of TNBC samples 


with Affymetrix 


microarray data


Blinded IHC-scoring (26 samples)


•Correlation of IHC score and Affymetrix microarray data


•Intra class correlation (ICC) of two observers


Selection of NDRG1, R2=0.526, ICC=0.98 (95%CI 0.96-0.99)


Part A:    Marker selection


Part B: IHC of core biopsy samples


Transfer cohort from FFPE-RNA-Seq:   NDRG1-z-score > 1.5


Selection of 27 GeparQuinto samples for cutoff transfer


Classification by pathologist:


sensitivity / specificity vs. RNA-Seq


Whole-slide IHC of core-biopsies


Digital image analysis (QuPath) 


with cutoff  10% positive cells:


sensitivity / specificity vs. RNA-Seq


Part C:    Transfer to TMA format 
and validation of predictive value


TMA of micro-cores from GeparQuinto core biopsies


251 samples with RNA-Seq data


Validation of predictive value for 


pCR


Digital image analysis with QuPath


n=23 TMA & whole slide IHC


sensitivity / specificity vs. RNA-Seq


n=251 QuPath-score


(percent positive cells)


n=193 TMA & HQ-RNA-Seq


sensitivity / specificity vs. RNA-Seq


Consistency analysis:Predictive value:


Supplementary Figure S2: Immunohistochemical validation of hypoxia signature 







 


 


 


 


 


Supplementary Figure S3: Correlation of Affymetrix microarray expression data and IHC scoring of three genes in independent TNBC dataset 


RNA expression from Affymetrix on y-axis is compared with immunohistochemical scoring for three individual genes (VEGFA, NDRG1, CSTB) from the hypoxia signature. R2 values are 


from Spearman rank correlation.  


 







 


Supplementary Figure S4: Para-necrotic expression of NDRG1 in TNBC 


Strong expression of NDRG1 is detected in regions of tumor necrosis (upper part) as well as DCIS necrosis (lower part). 







 


 


 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S5: Comparison of signature detection in High Quality and Low Quality Samples 


Upper row presents results from AIMS subtyping for 221 High Quality Samples (left) and 68 Low Quality samples (right). Log2 count data of the 268 genes shown in the 


lower (red/green) heatmaps were normalized by median centering across all 289 samples together for the analysis shown here. Gene signatures in the above (yellow/blue) 


heatmaps were calculated as mean values of the respective gene clusters in the lower panels. The Low Quality samples on the right show a larger proportion of samples 


classified as Her2-enriched and Normal-Like (NL) subtypes (Supplementary Table S8). The heatmaps of the Low Quality samples reveal that no effective detection was 


obtained for most individual genes (green in the lower right panel) and  signatures (blue in the upper right panel). (Sample sorting from left to right follows AIMS subtype 


and subsequently T-cell signature expression). 







 


 


 


Supplementary Figure S6: Correlation of proliferation signature and histological grade 


Box-plot demonstrating expression of proliferation signature in 221 high quality samples 


stratified by histological grading (median -0.73, -0.39, and 0.53 in G1, G2, and G3, respectively; 


P<0.001). 
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Supplementary Figure S7: Poor detection of NDRG1 expression signal in TMA analysis 


Scatterplot comparing NDRG1-RNA-Seq expresssion (x-axis) and IHC detection on TMA (y-axis) as 


percent positive cells from from digital image analysis by QuPath. Horizontal and vertical lines represent 


1.5 z-score cutoff values for RNA-Seq and TMA-IHC, respectively. In general, samples with high 


percentage of positive cell in the TMA analysis are associated with higher RNA-Seq values (Spearman 


rank correlation = 0.429). But for many samples with high RNA expression the signal was lost in TMA 


analysis. 23 of the samples, which were also analyzed by whole-slide IHC of core biopsies, are coloured 


in orange (≥10% positive cells) and green (<10% positive cells) according to the whole-slide result. The 


majority of the positive samples from whole slide IHC (orange) did not reach the 10% value in the TMA 


analysis. 







 


 


 


Supplementary Figure S8: Hypoxia signature and response by treatment arm 


Box-plots of expression of the hypoxia signature from RNA-Seq in samples showing a pCR (red) or not 


(blue). The box-plots are given separately for the patients from the two treatment arms of the trial 


either with bevacizumab (ECB-TB) or without (EC-T). Univariate logistic regression of pCR by the hypoxia 


signature was significant in the bevacizumab group (ECB-TB: OR 3.52, 95% CI 1.91-6.49, P<0.001) and 


only showed a trend in the group without bevacizumab (EC-T: OR 1.40, 95% CI 0.97-2.02, P=0.076). 
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Supplementary Table S1: Specific analysis roles and blinding status of contributing teams 


Order of 
analysis 


Role Team members Location/Affiliation Blinding status 


1 Pathological analyses, tissue banking, sample provision CD, KE, BS, CSo, IS, TF   Local trial units, central 
pathology 


blinded to molecular and 
clinical study data 


2 RNA preparation and sequencing  BMY, BLJ  Avera Cancer Institute fully blinded 


3 Primary RNA-Seq raw data analysis and QC  TM, JB  Avera Cancer Institute fully blinded 


4 Sample coding, dataset assembly and distribution KW, VN GBG-Statistics Dept. unblinded 


5 Blinded gene expression analysis, development of 
statistical analysis plan and SPSS script  


TK, UH  Goethe University fully blinded 


6 Correlation with patient data according to predeveloped 
SPSS script  


KW, VN  GBG-Statistics Dept. unblinded  


7 Blinded interpretation of summary results  TK, UH Goethe University no patient level data  


8 Monitoring and review of results  SL, MU, PAF, FM, VM, BG, 
CSch, CH, ES, JH, MvM 


GBG-Boards no patient level data 


 


Supplementary Table S2: Pre-defined analytical aims of the study: 


Pre-defined analytical aims of the study: 


1. Concordance of RNA-Seq-derived genomic ER-/PR-status, proliferation, immune signature expression, and molecular subtype with pathology-derived 
IHC-based ER-/PR-status, histological grading, and tumor-infiltrating-lymphocyte (TIL)-scoring, respectively. 


2. Robustness of the above concordances with regard to sample quality (QC class). 


3. Univariate predictive value for pCR of RNA-Seq-derived molecular subtypes, and signatures for proliferation, stroma, T-cell signature, and hypoxia 
signature. 


4. Multivariate logistic regression of pCR including the following predictor variables: 
 a) Hormone receptor status, treatment arm (+/- Bev), hypoxia signature, and the interaction between hypoxia signature and treatment arm. 
 b) All predictor variables from (a), with additional clinical variables (age, cT, cN, histological grade) as predictors. 
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Supplementary Table S3: Comparison of clinical parameters of the complete trial cohort and the RNA-Seq cohorts 


Parameter Category Total cohort RNA-Seq data P-Value§ High Quality 
RNA-Seq data 


P-Value§ 


  1540# (100.0%) 289 (100.0%)  221 (100.0%)  


Age median 48 46 <0.001 46 0.009 


clin. tumor status T1 261 (17.0%) 45 (15.6%) 0.028 37 (16.8%) 0.035 
 T2 883 (57.5%) 188 (65.3%)  145 (65.9%)  
 T3 224 (14.6%) 33 (11.5%)  23 (10.5%)  
 T4a-c 79 (5.1%) 8 (2.8%)  8 (3.6%)  
 T4d 89 (5.8%) 14 (4.9%)  7 (3.2%)  
 missing 4 1  1   


clin. lymph node status negative 772 (51.0%) 148 (51.6%) n.s. 115 (52.5%) n.s. 
 LN1-3 668 (44.1%) 124 (43.2%)  93 (42.5%)  
 LN4-9 57 (3.8%) 11 (3.8%)  7 (3.2%)  
 LN>=10 17 (1.1%) 4 (1.4%)  4 (1.8%)  
 missing 26 2  2  


HER2 status negative 1540 (100.0%) 289 (100.0%)  221 (100.0%)  


Hormone receptor status negative 558 (36.2%) 133 (46.0%) <0.001 102 (46.2%) 0.001 
 positive 982 (63.8%) 156 (54.0%)  119 (53.8%)  


Histological grade G1 53 (3.5%) 9 (3.1%) <0.001 7 (3.2%) <0.001 
 G2 781 (51.0%) 119 (41.5%)  86 (39.3%)  
 G3 697 (45.5%) 159 (55.4%)  126 (57.5%)  
 missing 9 2  2  


Histological subtype Ductal invasive 1241 (80.8%) 238 (82.4%) n.s. 179 (81.0%) n.s. 
 Lobular invasive 162 (10.5%) 26 (9.0%)  23 (10.4%)  
 other 133 (8.7%) 25 (8.7%)  19 (8.6%)  
 missing 4 0  0  


Treatment arm EC-T 743 (48.2%) 150 (51.9%) n.s. 117 (52.9%) n.s. 
 ECB-TB 797 (51.8%) 139 (48.1%)  104 (47.1%)  


pCR no 1156 (75.1%) 149 (51.6%) <0.001 112 (50.7%) <0.001 
 yes 384 (24.9%) 140 (48.4%)  109 (49.3%)  


§ P-values are the result of Fisher’s exact tests for binary variables, of chi-square tests for variables with three or more levels, and of Wilcoxon test for continous variables, respectively. 
# 1540 total patients with HER2 negative disease with response data from treatment arms out of the ITT population of 2572 patients from the GeparQuinto trial. 







Supplementary Table S4: Gene lists of signatures
Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID Signature Gene EntrezID
Adipocyte AASS 10157 Basal ABCA13 ER‐related ABCC8 6833 Hypoxia CSTB 1476 IFN CMPK2 MHC1 GBP1 2633 Proliferation ANLN Ribosomal CSDE1 7812 Stroma ADAM12 8038 T‐Cell B2M 567
Adipocyte ABCA10 Basal COL27A1 ER‐related AFF3 3899 Hypoxia NDRG1 10397 IFN DDX58 23586 MHC1 GBP2 2634 Proliferation ARHGAP11A 9824 Ribosomal EEF1A1 1915 Stroma ADAMTS12 81792 T‐Cell CD74 972
Adipocyte ABCA6 23460 Basal CRYAB 1410 ER‐related AGR2 10551 Hypoxia VEGFA 7422 IFN DDX60 55601 MHC1 HLA‐A 3105 Proliferation ASPM 259266 Ribosomal EEF1G 1937 Stroma BNC2 54796 T‐Cell CIITA 4261
Adipocyte ABCA8 10351 Basal ELF5 2001 ER‐related AR 367 IFN DDX60L MHC1 HLA‐B 3106 Proliferation AURKA 6790 Ribosomal HSPD1 3329 Stroma CACNA1C 775 T‐Cell CYBB 1536
Adipocyte ABCA9 Basal FOXC1 2296 ER‐related CA12 771 IFN EIF2AK2 5610 MHC1 HLA‐C 3107 Proliferation BRIP1 83990 Ribosomal LRPPRC 10128 Stroma COL10A1 1300 T‐Cell DOCK10 55619
Adipocyte ADH1B 125 Basal GABRP 2568 ER‐related CAPN8 IFN EPSTI1 MHC1 HLA‐E 3133 Proliferation BUB1 699 Ribosomal NACA 4666 Stroma COL11A1 1301 T‐Cell DOCK2 1794
Adipocyte ANK2 287 Basal KRT23 25984 ER‐related CCDC170 80129 IFN HERC5 51191 MHC1 HLA‐F 3134 Proliferation BUB1B 701 Ribosomal PABPC1 26986 Stroma COL5A3 50509 T‐Cell DOCK8
Adipocyte APOD 347 Basal PROM1 8842 ER‐related CYP2B7P1 IFN HERC6 55008 MHC1 NLRC5 Proliferation CCNB1 891 Ribosomal PRKDC 5591 Stroma COL8A1 T‐Cell HLA‐DPA1 3113
Adipocyte COL14A1 7373 Basal RGMA ER‐related ERBB4 2066 IFN IFI44 10561 MHC1 PSMB8 5696 Proliferation CDC20 991 Ribosomal RPL10 6134 Stroma COMP 1311 T‐Cell HLA‐DRA 3122
Adipocyte FAT4 79633 Basal SFRP1 6422 ER‐related ESR1 2099 IFN IFI44L 10964 MHC1 TAP1 6890 Proliferation CDCA2 Ribosomal RPL11 6135 Stroma CRISPLD2 83716 T‐Cell HLA‐DRB1 3123
Adipocyte FREM1 Basal SLC34A2 10568 ER‐related FOXA1 3169 IFN IFIH1 64135 MHC1 TAP2 6891 Proliferation CENPE 1062 Ribosomal RPL12 6136 Stroma CTGF 1490 T‐Cell IL10RA 3587
Adipocyte IGF1 3479 Basal SLC6A14 11254 ER‐related FSIP1 IFN IFIT1 3434 MHC1 WARS 7453 Proliferation CENPF 1063 Ribosomal RPL19 6143 Stroma DCHS1 8642 T‐Cell NCKAP1L 3071
Adipocyte LAMA2 3908 Basal SOX10 6663 ER‐related GATA3 2625 IFN IFIT2 3433 Proliferation CIT 11113 Ribosomal RPL23A Stroma DPYSL3 1809 T‐Cell PARP14
Adipocyte PLEKHH2 Basal TCF7L1 83439 ER‐related GFRA1 2674 IFN MX1 4599 Proliferation DEPDC1 55635 Ribosomal RPL27A 6157 Stroma FAP 2191 T‐Cell PARP9
Adipocyte SPARCL1 8404 Basal ZNF462 ER‐related GREB1 9687 IFN MX2 4600 Proliferation DIAPH3 81624 Ribosomal RPL3 6122 Stroma FBLN2 2199 T‐Cell PTPRC 5788
Adipocyte SVEP1 79987 Basal DSC3 1825 ER‐related GRPR 2925 IFN OAS1 4938 Proliferation ECT2 1894 Ribosomal RPL32 6161 Stroma FLNC 2318 T‐Cell SAMD9 54809
Adipocyte TNXB 7148 Basal DSG3 1830 ER‐related KDM4B 23030 IFN OAS2 4939 Proliferation ESPL1 9700 Ribosomal RPL4 6124 Stroma FNDC1 T‐Cell SAMD9L


Basal FAT2 2196 ER‐related MAPT 4137 IFN OAS3 4940 Proliferation EXO1 9156 Ribosomal RPL5 6125 Stroma GAS6 2621 T‐Cell SAMHD1 25939
Basal KRT14 3861 ER‐related MLPH 79083 IFN PARP12 64761 Proliferation FANCA 2175 Ribosomal RPL9 6133 Stroma GAS7 8522 T‐Cell STAT1 6772
Basal KRT16 ER‐related NAT1 9 IFN PLSCR1 5359 Proliferation FANCI 55215 Ribosomal RPLP0 6175 Stroma GLIS2 T‐Cell STAT2 6773
Basal KRT17 3872 ER‐related PGR 5241 IFN RSAD2 91543 Proliferation FOXM1 2305 Ribosomal RPS11 6205 Stroma IGFBP4 3487 T‐Cell TRIM22 10346
Basal KRT5 3852 ER‐related SCUBE2 57758 IFN SP100 6672 Proliferation GMPS 8833 Ribosomal RPS18 6222 Stroma ITGA11 T‐Cell XRN1
Basal KRT6A ER‐related SLC44A4 80736 IFN SP110 3431 Proliferation GTSE1 51512 Ribosomal RPS20 6224 Stroma ITGA5 3678
Basal KRT6B 3854 ER‐related TBC1D9 23158 IFN UBA7 7318 Proliferation HIST1H2BO 8348 Ribosomal RPS24 6229 Stroma ITGB5 3693
Basal TRIM29 23650 ER‐related THSD4 79875 IFN XAF1 54739 Proliferation HJURP 55355 Ribosomal RPS27A 6233 Stroma ITGBL1 9358


IFN ZNFX1 Proliferation IQGAP3 Ribosomal RPS4X 6191 Stroma KANK2 25959
Proliferation KIF14 9928 Ribosomal RPS6 6194 Stroma KIAA1462 57608
Proliferation KIF23 9493 Ribosomal RPS7 6201 Stroma KIF26B 55083
Proliferation KIF2C 11004 Ribosomal RPSA Stroma LMOD1 25802
Proliferation KIFC1 3833 Ribosomal TPT1 7178 Stroma LRRC15 131578
Proliferation KPNA2 3838 Stroma MAP1A 4130
Proliferation LMNB1 4001 Stroma MICAL2 9645
Proliferation MCM10 55388 Stroma MMP11 4320
Proliferation MELK 9833 Stroma MMP14 4323
Proliferation MKI67 4288 Stroma MRC2 9902
Proliferation MYBL2 4605 Stroma MXRA8 54587
Proliferation NCAPD2 9918 Stroma MYH1 4619
Proliferation ORC6 23594 Stroma MYL9 10398
Proliferation POLQ 10721 Stroma NID1 4811
Proliferation PRC1 9055 Stroma NID2 22795
Proliferation PRR11 Stroma PCOLCE 5118
Proliferation RACGAP1 29127 Stroma PDLIM7 9260
Proliferation RRM2 6241 Stroma PHLDB1 23187
Proliferation SMC4 10051 Stroma PMEPA1 56937
Proliferation SPAG5 10615 Stroma PMP22 5376
Proliferation STIL 6491 Stroma PODN
Proliferation TICRR Stroma RIN2 54453
Proliferation TOP2A 7153 Stroma SFRP2
Proliferation TPX2 22974 Stroma SFRP4 6424
Proliferation TTK 7272 Stroma SPON1 10418


Stroma SSC5D
Stroma TAGLN 6876
Stroma TENM4 26011
Stroma THY1 7070
Stroma TIMP2 7077
Stroma TIMP3 7078
Stroma UNC5B 219699
Stroma ZFHX4 79776
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Supplementary Table S5: Core genes of the hypoxia signature cluster from different datasets with correlated expression 


Gene 
symbol 


Gene name Category Details FFPE-RNA-
Seq data 


VEGFA Vascular endothelial 
growth factor 


Angiogenesis Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. 
Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis 
and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and 
KDR/VEGFR2 receptors, heparan sulfate and heparin. 


yes 


NDRG1 N-myc downstream
regulated gene 1


Stress response Involved in stress responses, hormone responses, cell growth, and differentiation. 
Necessary for p53-mediated caspase activation and apoptosis. 


yes 


ANGPTL4 Angiopoietin-like 4 Angiogenesis, 
hypoxia 


Hypoxia-induced expression in endothelial cells. May act as a regulator of 
angiogenesis and modulate tumorigenesis. In response to hypoxia, the unprocessed 
form of the protein accumulates in the subendothelial extracellular matrix. 


no 


ADM Adrenomedullin Angiogenesis Adrenomedullin functions include vasodilation, regulation of hormone secretion, 
and promotion of angiogenesis. 


no 


DDIT4 DNA damage 
induced transcript 4 


Stress response Regulates cell growth, proliferation and survival via inhibition of mTORC1. Important 
role in responses to cellular energy levels and cellular stress, including responses to 
hypoxia and DNA damage. 


no 


CSTB Cystatin-B Proteinase 
inhibitor 


Intracellular thiol proteinase inhibitor thought to play a role in protecting against 
proteases leaking from lysosomes. 


yes 
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Supplementary Table S6: Accuracy of IHC detection of NDRG1 as marker of the hypoxia signature 


Cohort Finding (N=23) Finding (N=23) Finding (N=23) Full (N=193) 


Source Whole slide Whole slide TMA TMA 


Method pathological scoring digital image analysis digital image analysis digital image analysis 


Cutoff pos/neg >10% positive cells >10% positive cells >10% positive cells 


Positive by RNA-Seq* 19 19 19 20 


Negative by RNA-Seq* 4 4 4 173 


Accuracy 91.3 % 73.9 % 47.8 % 81.9 % 


Sensitivity 89.5 % 68.4 % 36.8 % 40.0 % 


Specificity 100.0 % 100.0 % 100.0 % 86.7 % 


PPV 100.0 % 100.0 % 100.0 % 25.8 % 


NPV 66.7 % 40.0 % 25.0 % 92.6 % 


* based on cutoff z-score 1.5 from RNA-Seq 
 


Supplementary Table S7: Comparison of hormone receptor status from RNA-Seq and IHC 


High Quality samples Sensitivity Specificity PPV NPV Accuracy 


ERRNA-Seq  vs. ERIHC  (N=221) 75.7 % 93.4 % 92.6 % 78.0 % 84.2 % 


PRRNA-Seq  vs. PRIHC  (N=221) 76.6 % 83.5 % 77.4 % 82.8 % 80.5 % 


Low Quality samples Sensitivity Specificity PPV NPV Accuracy 


ERRNA-Seq  vs. ERIHC  (N=68) 72.7 % 88.6 % 85.7 % 77.5 % 80.9 % 


PRRNA-Seq  vs. PRIHC  (N=67) 61.3 % 86.1 % 79.2 % 72.1 % 74.6 % 


 


Supplementary Table S8: Comparison of Molecular Subtyping between High Quality and Low Quality Samples 


Group Basal-like Her2-enrich. LumA LumB Normal-like 


Total (N=289) 119 (41.2%) 60 (20.8%) 33 (11.4.%) 46 (15.9%) 31 (10.7%) 


HQ no dupl. (N=221, %) 103 (46.6%) 33 (14.9%) 28 (12.7%) 42 (19.0%) 15 (6.8%) 


LQ no dupl. (N=68, %) 16 (23.5%) 27 (39.7%) 5 (7.4%) 4 (5.9%) 16 (23.5%) 


The distributions of molecular subtypes according to AIMS differ significantly (P = 8.6 x 10-9, Fisher’s 
Exact Test) between samples with high and low quality. 
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Supplementary Table S9: Univariate logistic regression of pCR by molecular markers (N=221 High Quality samples) 


Molecular marker OR 95% CI P-value 


Basal-like* 8.88 2.34-33.6 0.001 


HER2-enriched* 3.33 0.79-14.1 0.10 


Lum-A* 0.87 0.18-4.28 0.86 


Lum-B* 2.22 0.54-9.14 0.27 


T-cell signature# 1.60 1.21-2.12 0.001 


Proliferation signature# 2.88 2.00-4.16 <0.001 


Hypoxia signature# 1.92  1.41-2.60 <0.001 


* vs. Normal-like subtype, # z-score 


Supplementary Table S10: Multivariate logistic regression of pCR with NDRG1 from TMA analysis 


 OR 95% CI P-value 


Hormone receptor (neg. vs. pos.) 4.35 2.34-8.07 <0.001 


NDRG1-TMA-IHC (z-score >1.5)  3.79 0.85-16.9 0.080 


Bevacizumab therapy 0.92 0.53-1.60 0.766 


Interaction NDRG1-TMA-IHC * bevacizumab 1.31 0.78-2.21 0.309 


cN (≥10 vs 4-9 vs 1-3 vs 0 positive nodes) 0.80 0.52-1.24 0.323 


cT (T4d vs T4a-c vs T3 vs T2 vs T1) 0.80 0.59-1.0 0.173 


Grading (G3 vs G2 vs G1) 1.43 0.83-2.48 0.197 
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